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K-Means

• Choose a fixed number of clusters
• Choose cluster centers and point-cluster allocations to 

minimize error 

• can’t do this by search
• there are too many possible allocations.

•  Algorithm
• fix cluster centers; allocate points to closest cluster
• fix allocation; compute best cluster centers
• x could be any set of features for which we can compute a distance 

(careful about scaling)
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K-means clustering using intensity alone and color alone

Image Clusters on intensity Clusters on color



K-means using color alone, 11 segments

Image Clusters on color



K-means using
color alone,
11 segments.



K-means using colour and
position, 20 segments



Mixture models and segmentation

• In k-means, we clustered pixels using hard assignments
• each pixel goes to closest cluster center
• but this may be a bad idea

• pixel may help estimate more than one cluster

• We will build a probabilistic mixture model

P (x|µ1, . . . , µk,π1, . . . ,πk,Σ) =
∑

i

πiP (x|µi,Σ)



Mixture model

• Interpretation:
• obtain pixel by 

• choosing a mixture component 
• given that component, choosing pixel

• Natural to have each mixture component be a Gaussian

P (x|µ1, . . . , µk,π1, . . . ,πk,Σ) =
∑

i

πiP (x|µi,Σ)



Mixture components

• Gaussians
• are  oriented “blobs” in the feature space
• we will assume covariance is known, and work with mean
• expression below

P (x|µi,Σ) ∝ exp
−(x− µi)Σ−1(x− µi)
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Problem: Learning and IDLL

• We must estimate the mixture weights and means
• Maximising likelihood is very hard

• in this form, sometimes known as incomplete data log-likelihood
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Learning and CDLL

• Introduce hidden variables to get complete data log-
likelihood
• d_{ij} is 1 if data item i comes from blob j

• 0 otherwise
• Learning would be easy if we knew which blob each data item came from

• weights: count what fraction came from which blob
• means: average data items

• But we don’t

Lc(θ, δij) =
∑

ij

δij log (πjP (xi|µj ,Σ))



Working with CDLL

• Notice:
• with an estimate of the parameters, can estimate blobs data came from

• this could be a soft estimate
• we could plug this in, then reestimate the parameters

• Formal procedure:
• start with estimate
• form Q function, below (The E-step)

• maximise in parameters (The M-step)
• Iterate

Q(θ; θ(n)) = EP (δ|x,θ(n)) (Lc(θ, δ))



The E-step for Gaussian mixtures

• Notice that the expression for the Q function simplifies

EP (δ|x,θ(n)) (Lc(θ, δ)) = EP (δ|x,θ(n))
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The E-step for Gaussian mixtures

• We rearrange using probability identities

P (δij = 1|x, θ(n)) =
P (x, δij = 1|θ(n))

P (x|θ(n))

=
P (x|δij = 1, θ(n))P (δij = 1|θ(n))

P (x|θ(n))

=
P (x|δij = 1, θ(n))P (δij = 1|θ(n))

P (x|δij = 1, θ(n))P (δij = 1|θ(n)) + P (x, δij = 0|θ(n))



The E step for Gaussian mixtures

• And substitute

P (xi|δij = 1, θ(n)) =
1
Z

exp
−(xi − µ(n)

j )Σ−1(xi − µ(n)
j )
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P (δij = 1|θ(n)) = πj



• We must maximise

• in the mixture weights and in the means
• we can drop log Z

The M step for Gaussian mixtures
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• differentiate, set to zero, etc.
• regard the expectations as “soft counts”

• so mixture weights from soft counts as:

• and means from soft counts as:

Two ways

πj =
∑

i P (δij = 1|xi, θ(n))∑
i,j P (δij = 1|xi, θ(n))

µj =
∑

i xiP (δij = 1|xi, θ(n))∑
i,j P (δij = 1|xi, θ(n))



Figure from “Color and Texture Based Image Segmentation Using EM and Its Application to Content 
Based Image Retrieval”,S.J. Belongie et al., Proc. Int. Conf. Computer Vision, 1998, c1998, IEEE

Segmentation with EM



Affinity matrix



Good split



Measuring Affinity

Intensity

Texture

Distance
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Scale affects affinity



• Simplest idea:  we want a vector a giving the association 
between each element and a cluster

• We want elements within this cluster to, on the whole, 
have strong affinity with one another

• We could maximize  

• But need the constraint 
• This is an eigenvalue problem - choose the eigenvector of A with largest 

eigenvalue

Eigenvectors and cuts
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Example eigenvector

points

matrix

eigenvector



More than two segments

• Two options
• Recursively split each side to get a tree, continuing till the eigenvalues are 

too small
• Use the other eigenvectors



Normalized cuts

• Current criterion evaluates within cluster similarity, but 
not across cluster difference

• Instead, we’d like to maximize the within cluster 
similarity compared to the across cluster difference

• Write graph as V, one cluster as A and the other as B• 
Maximize

•  i.e. construct A, B such that their within cluster similarity is high 
compared to their association with the rest of the graph
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• Write a vector y whose elements are 1 if item is in A, -b if 
it’s in B

• Write the matrix of the graph as W, and the matrix which 
has the row sums of W on its diagonal as D, 1 is the vector 
with all ones.

• Criterion becomes

• and we have a constraint
• This is hard to do, because y’s values are quantized

Normalized cuts
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• Instead, solve the generalized eigenvalue problem

• which gives

• Now look for a quantization threshold that maximises the 
criterion --- i.e all components of y above that threshold 
go to one, all below go to -b

Normalized cuts
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maxy y
T D −W( )y( ) subject to yTDy = 1( )
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Figure from “Image and video segmentation: the normalised cut framework”, 
by Shi and Malik, copyright IEEE, 1998


